2 DOF Laser Pointer Systems Group Report

White-Paper Updated - Mar 13, 2024
Stephen Qiao, ECE, University of British Columbia, Vancouver, BC, Canada
Steven Lee, ECE, University of British Columbia, Vancouver, BC, Canada

Abstract
A 2 DOF spherical wrist is developed. The system consists of two DC gearmotors that drives the
pitch and yaw rotation of the attached laser pointer. The PID controller converts the desired angle

to move the laser pointer in the XY plane and draws the desired shape.

In this paper, Section 1 describes motor selection. Section 2 describes the mechanical design of
the spherical wrist that holds the laser pointer. Section 3 describes the simulation and tuning of
the control system in MATLAB. Section 4 describes the electronics interfacing the
micro-controller and motor. Section 5 describes the interrupt service routine in the
microcontroller. Each section contains requirements, constraints, and goals (RCGs), along with

relevant design decisions.

Nomenclature

RCG Requirements, constraints, and goals
PID Proportional, integral and derivative
ISR Interrupt service routine

GPIO General purpose input output

PWM Pulse width modulation

CF Control frequency

RPM Revolutions per minute

DOF Degree of freedom

ELEC_TF Electrical Admittance Transfer Function
MECH_TF Mechanical Admittance Transfer Function

1. Motor Selection

Table 1: Motor Selection RCGs

Requirement Constraint Goal

Power: 12V ~ ~

~ Max current <2.2 A ~

Speed <350 RPM ~ ~

~ Max power <264 W Operating power of 2.4 W
should be reached for

maximum efficiency

A motor is selected to have high torque and high RPM to be able to be controlled under high

loads, eliminating the need for external custom gear trains. The motor needs to be operated under

12V for maximum speed. The motor is included with an encoder, eliminating the need for an

external encoder. The specified motor is a JGA25-371 Geared Motor with Encoder. The motor is

53.6mm long x 25mm ¢ and has a 4mm ¢ shaft. The motor has a maximum speed of 350 RPM

and a stall torque of 0.5099458 Nm. The motor with the encoder is shown in Fig. 1.

Figure 1: JGA25-371 Geared Motor with Encoder

Table 2: Motor Parameters

Jm (Nms) Km (Nm/A) | Bm (Nms) Rw (QQ) |[Lw (H)

Value | g 76976 x 10" [0-32740 |g 93268 x 10°* |6-191 |2.516 x 10°°

The motor parameters provided in Table 2 are found using a RLC meter, and deriving from the
datasheet of the motor. A torque constant Km of the motor is determined by finding the
equivalent back emf constant Kb (1) from the values in the datasheet. The most common way of

finding the back emf constant Kb is by relating the operating voltage Vb and the angular velocity

w it operates at (2).

Km=Kb (1)

Vb
Km =—(2)

Damping constant Bm is determined by relating the torque T and speed of the motor ® under no

loads (3). Replacing t with the Km we found and using the current iW under no loads from the
data sheet (4), Bm can be formulated.
T
Bm = — (3)

T=Km-i (4)

w

Rotor Inertia, Jm, is calculated from measuring the mechanical time constant T . and

formulating with the torque constant Km and the resistance R values (5).
rmK m2

Jm =— (5)

2. Spherical Wrist Design
Table 3: Mechanical Design RCGs

Requirement Constraint Goal

Must be able to rotate in the ~ ~

pitch and yaw axis

~ ~ Maximize rotational speed

~ Rotation range < 90° ~

~ ~ Loads on motor should have

minimum inertial mass

Must be able to mount 2 ~ ~

motors and 1 laser pointer

A mechanical system for a 2 DOF laser pointer is designed in Solidworks. It consists of a
stationary base and two main links. The base platform, acting as a mount for the yaw motor, has
a larger surface area and greater mass compared to the rest of the mechanical system, ensuring it
stays stationary. The dimensions of the base platform are displayed in Fig. 2, where it has equal
length and width of 150mm and includes a 26mm diameter hole in the center, allowing the motor

to fit.

L]

Boss-Extrude

150.00
(D1)

$26.00

1

150.00 —H rF
¢ 02) ¢

Figure 2: Base Platform Geometry

The rest of the mechanical system’s mass is minimized to ensure lower torque is needed for
optimal rotational control. Linkage 2 acts as a yaw rotational platform and connects the motor
with the rest of the load. The linkage also satisfies the requirement of the laser pointer being able
to move in the x-axis. The dimensions of Linkage 2 with both the rotational platform and the
pitch motor mount attached is shown in Fig 3. Both components are ensured to have cylindrical

holes with diameters that allows the motors to fit.

! /
@70.0 l/zﬁ o

Figure 3: Linkage 2: Rotational Platform (Left), Pitch Motor Mount (Right)

Linkage 3 is a mount for a laser pointer, ensuring no translational movement. The laser pointer is

able to rotate through its pitch axis through the gear train attached to the shaft of the mount,

6
which is freely contained within the laser mount. The dimensions of both the laser pointer mount

and shaft is shown in Fig 4, with the mount having a height and length of 25mm and Smm width.
It also satisfies the need for lower friction of the rotation of the shaft by making the diameter of
the hole bigger. The laser pointer shaft has a diameter of 4mm and length of 35mm to ensure the

laser is able to move in the pitch axis.

4

Figure 4: Linkage 3: Laser Pointer Mount (Left) & Laser Pointer Shaft (Right)

A gear train of 2 spur gears with a 1:1 teeth ratio, is used to transfer pitch axis rotations from the
pitch motor shaft to the laser pointer shaft. The gear has a pressure angle of 20°, 78 teeths, tooth

module of 0.4mm, and face width of 4mm.

Table 4: Mechanical Inertia Mass on Motor

Load Inertial Mass (K gmz)
Laser Pointer Mount 1.6326E-7

Laser Pointer Shaft 1.1913E-7

MOTT1 (Pitch Motor) 8.4827E-6

Pitch Motor Mount 6.0584E-6

Rotating Platform 9.54125E-5

Gear 1 1.8733E-7

Gear 2 1.8733E-7

Total = Laser Pointer Mount + Laser Pointer Shaft + MOT1 + Pitch | 2.208466E-4
Motor Mount + Gear 1 + Gear 2 + Rotating Platform

A mechanical parameter that needs to be considered is the inertial loads on the motors. Inertial
loads were determined from using Solidworks. Solidworks was used to closely simulate the PLA
material used for 3D printing. In Table 4, the total load on top of the motor is calculated and
shown. The added load J,,,4 needs to be included into the motor’s mechanical admittance Ym (6).

The load on the motor’s shaft is added to the rotor inertial Jm, decreasing the motor system’s Ym

7).
Ym=5—rr (6

Total

Sy =Jm 4], (@)

Total

Any extra damping constant or friction can be neglected, as the values are relatively small.

3. Simulation and Tuning with MATLAB

Table 4: MATLAB Simulation RCGs

Requirement Constraint Goal
Settle time < 0.5s ~ Settle time as small as possible
Overshoot <1 % ~ Overshoot as small as possible

PID Transfer function ~ ~

~ ~ Steady state error as small as possible

In the control system’s model in Figure 5, a motor is the plant that is being controlled. The

motor’s transfer function is a feedback loop that contains a ELEC_TF, MECH_TF, and Km. A

8
Vgain is applied after the PID output to convert the duty cycle of 0-100% to a voltage input that

is used as the operating voltage for the motor. The PID gain values are found by using ELEC
341°s 15-Step Design Process. First the partial dynamics is determined to obtain the temporary
gain KO and the double zeros. Then, KO is tuned to a desired PM or performance metrics to
determine the master gain K. Lastly, the PID gains Kp, Ki, and Kd are heuristically tuned to find
the best settle time, rise time and overshoot. All the MATLAB code for these steps can be found
in the Appendix. An integrator needs to be applied after the motor’s transfer function to ensure
the position of the motor can be determined. A sensor is required in the feedback path of the
control system, to measure the actual angle of the motor. The encoder is the sensor that has a

resolution of 360 ticks per revolution.

_'D
1 ol 1 e ctual Angle (rad)
Desirad Angle (rad] g’*) Ermor (r2d) . Duty Cyce (%) " Valiage (V) v st Rw [cwmm | Torque (Nm) T total-s + Bm | Sesaitds) ¥
Limiter
WGain

Elec Admittance Torqus Canstant

Mech Admitiance

Back EMF Canstant

Measured Angle {rad) ™ L Measured Angle (rad) CF Measured Angle {rad) a L
—_— 05
(Nc+ Nh)s + CF

Compensate Senzor Gain Resolution of f Sensor

Figure 5: Simulink Model

Proportional Gain

Figure: 6 PID Model

An ideal and actual step response of the motors speed at 12V is shown in Figure 7. The ideal
curve in Figure 7 has a settling time of 0.073 seconds, a rise time of 0.043 seconds and 0

overshoot. However, the ideal step response is unachievable with limits in the real world. The

actual step response with limitations has a settling time of 0.2158 seconds, a rise time of 0.08

seconds, and 3.425% overshoot.

. Ideal vs Measured System Response of MOT4

300 -

250

200

RPM

150 -

100 -

50

Ideal System Response
Measured System Response

0 0.05 0.1 0.16 0.2 025
Time (seconds)

Figure 7: Ideal and Tuned Step Response with Approximated Motor Model

4. Microcontroller

Table 5: Microcontroller RCGs

Requirement Constraint Goal

>= 9 GPIO Pins ~ ~

5V output ~ ATMega328P outputting 5V
when duty cycle is 100%

Through-hole MCU ~ ~

The team requires the use of at least nine GPIO pins on the MCU. This is because the decoder
transmits the current angle values in a 7-bit resolution, with each bit sent through a separate wire,
and the H-bridge needs two pins, each controlling one direction of the motor. The ATMega328P,
offering 23 GPIO pins, amply meets our design requirements. Additionally, the H-bridge
operates at a specific voltage, and the ATMega328P is capable of supplying 5V at a 100% duty
cycle, which is suitable for the H-bridge. Initially, the team considered the PIC32, STM32, or

ATMega328P. However, the PIC32 was ruled out as it can only output 3.3V, failing to meet the

10

design requirement. The STM32 was also discarded because it is not available in a through-hole

format. Consequently, the ATMega328P was selected as the most suitable option.

Figure 8: Through-hole ATMega328P Microcontroller (LEFT), Arduino Uno (RIGHT)

5. Interrupt Service Routine (ISR)

Table 6: Interrupt Service Routine RCGs

Requirement

Constraint

Goal

> 100Hz control frequency
with ~50% Timerl ISR

Utilization

Achieve Timerl ISR

utilization of 50%, and satisfy

100Hz or greater ISR
frequency for both Timerl
and 2.

>= 2 Usable Timer ISRs

Split processing work

between 2 timers

Adjustable duty cycle from
0-100%

Consistent duration of

on-time.

Achieve self-adjusting duty
cycle functionality from PID

control output values.

Timerl ISR Includes PID
calculation and sensor

processing

Achieve speed control based

on PID output

11

Real-time Weighted Sum Reduce noise from Derivative

Filter term of the PID

The firmware program for the MCU is composed of Timer]l and Timer2 Interrupt Service
Routines (ISRs). In the Timerl ISR, the main calculation processes such as calculations for the
current angle, motor speed, and PID control are executed. Meanwhile, the Timer2 ISR is
responsible for determining the motor's direction and toggling the pins to generate PWM signals.
Therefore, Timer1 ISR utilization is static and needs to be set in a way that would give the main
loop ample execution time. The program employs the micros() built-in function to calculate the
time difference (dt), which is needed for computing the Integral (I) and Derivative (D)
components of the PID control. This function relies on Timer0 to count the time in

microseconds.

Timerl ISR operates in CTC mode, where the timer counts up to OCR1A register value
triggering the ISR. The register value has been set so that the ISR will be triggered at 1.25kHz,
which is set based on ~50% Timer1 ISR utilization when the ISR run-time is around 400us
(2.5kHz -> 1.25kHz @ 50% utilization). 50% Timer1 ISR utilization is set so that the program

can give sufficient time for the main loop. See Appendix B for ISR code.

Figure 9: 50% Timerl ISR Utilization

The Timerl ISR runs the PID calculation (see Appendix C) using the Proportional,

Integral, Derivative equations below:

P = error * Kp (8)

12
I =Ki * (I + error * dt) (9)

D = (error — previouserror) /dt (10)

The integral wind-up needs to be taken account for in that it may cause extreme
overshoots and prolonged oscillations due to too much error accumulation. Through numerous

trials and errors, clamping values were found to restrict the wind-up.

— PR T vy

15 volatile float kp = @.2; // Increasing speeds up response and removes overshoot
16 volatile float ki = ©.99; // Increasing removes steady state error

17 volatile float kd = ©.01; // Increasing slows down response and removes spikes
18 volatile float integral max = 10;

19 volatile float integral min = -10;

0

Figure 10: Integral Clamping Values

The Finite Differential Derivative Weighted Sum Filter is implemented within the PID
function to smoothen the volatility of the Derivative term as the PID is run continuously by the
ISR.

Timer2 ISR operates in fast-PWM mode, where the Timer2 counter ascends from 0 to
255, at which the Timer2 ISR is triggered, so the Timer2 ISR is activated every 255 timer count.
Using the output of the PID controller, the firmware adjusts the OCR2A register linked to pin 13
or the OCR2B register associated with pin 3, setting values ranging from 0 to 255. Consequently,
throughout the maximum 255 timer count duration of the Timer2 ISR, the MCU can activate the
pins proportionally to Timer2 ISR max duration, generating a PWM signal. This capability
allows the firmware to modulate the duty cycle of the pin outputs from 0 to 100%, while keeping
the pulse lengths highly consistent.

__MPosi0000s ' CURSOR

%

Source

13
Figure 11: PWM at 25% Duty Cycle (LEFT), PWM at 100% Duty Cycle (RIGHT)

For laser imaging tasks, it is important for the motor to move at a sufficiently high speed.
The motor speed requirement is based on intuition, concluding that it is feasible and sufficiently
quick to operate the control period in milliseconds. Therefore, the maximum control period is set
to 10ms, corresponding to a minimum frequency of 100Hz. The MCU has a clock frequency of
16MHz and uses Timer2 ISR fast-PWM mode to toggle the pins on and off while having the

prescaler set to 8. The relevant equation to find the control frequency is as follows:

Clock Frequency (11)

f requency = Prescaler * (Max Timer Count + 1)

Using this equation, the control frequency of the Timer2 ISR is calculated to be

7.8125kHz, which satisfies the speed requirement.

M 50,0.us

Figure 12: Measuring Control Frequency Experimentally

APPENDIX
Appendix A - MATLAB Modeling Code

%% ELEC 391 Linear Model

%% MOT4 Motor Parameters

Im = 6.76976%10°(-4); % Nms"2
Kb = ©.327480; % Vs/rad

Kt = ©.32749; % Nm/A

Bm = 8.93268%10°(-4); % Nms
Rw = 6.191; % ohms|

Llw = ©.802516; % Henrys

J1 = 9.080110235989999999999;
J_total = Jm + J1;

CF = 1/(124%10"(-6));

Mc = ©.5; % Duty Cycle

Mh = ©8.5; % Control Signal Held
Nd = ©.5; % FODD

NF = (15%7-42)/65; % WSF

s = tf('s");

vgain = 12/100; % 12V per 100% duty cycle

Res = 2%pi/360;

%% Identify Sub Systems

%% Motor TF

Ye = 1 / (Lw*s + Ruw);

Ym =1 / (1 _total®*s + Bm);
motor_tf = feedback(Ye*Kt*¥Ym, Kh);

%% Plant TF
Gp = vgain * motor_tf * (1/s);

%% Sensor TF
Hs = CF / ((Nc+Mh)*s + CF);

%% Feedback path
feedback_path = Hs * Res * (1/Res}; % Equal to Hs

15
Dp = (CF/((Nd+Nf)*s + CF));

[Dp_poles, Dp_zeros] = pzmap(Dp);

poles = Dp _poles’;

KO = margin(Dp*Gp*Hs} % find temporary ultimate gain
nyglog(K@*Dp*Gp*Hs); % Check for stability

[ro,m, wcg, wcp] = margin(K@*Dp*Gp*Hs);

% Get zeros
[Zresult, maxPM] = newtonsCCzeroPID(-wcp, K@*Dp*Gp*Hs)

zeros = [Zresult, conj(Zresult)]
Dz = (s-zeros{1))*(s-zeros(2))/{zeros(1}*zeros(2))

D = Dz * Dp;

%% Find K for Desired PM
tuned _gain = @;

best PM = Inf;
current_gain = 1;

desired PM = 45;
resolution = @.1;

% Iterate over gain values

while true
% Bpply current gain to the system
sys = current_gain * D * Gp * Hs;

% Calculate phase margin
[~, PM] = margin(sys);

% Check if this gain gives a phase margin closer to the desired value
if abs(desired_PM - PM) < abs(desired_PM - best_PM)

tuned gain = current_gain;

best PM = PM;
end

% Break the loop if phase margin starts increasing again (assumes unimodal behavior)
if PM > desired PM && current_gain > 1

break;
end

% Increase the gain for the next iteration
current_gain = current_gain + resolution;
end

%% Heuristic Tune Gains
% Initial PID Control
K = tuned gain;

init Kp = 1;
init Ki = 1;
init_Kd = 1;

3

init_PID Controller = pid{init_Kp, init Ki, init_Kd, @);
init _cl sys = feedback(K®init PID Controller*Gp, Hs};

figure;
step(init_cl_sys)
init_sys stepResults = stepinfo(init_cl sys)

% Tuned PID Control
K = tuned_gain;

Kp = 19;
Ki = ©.8;
Kd = ©.2;

PID Controller = pid(Kp, Ki, Kd, @);
cl _sys = feedback(K*PID_Controller*Gp, Hs);

figure;
step(cl_sys)
sys_stepResults = stepinfo(cl_sys)

Appendix B - ISR C Code
Timerl and Timer2 ISR Setup

16

void setup() {
Serial.begin(9608 ;

pinMode (bitd,
pinMode (bitl,
pinMode (bit2,
pinMode (bit3,
pinMode (bit4,
pinMode (bit5,
pinMode (bité,
pinMode (bit?,

pinMode (pwmLeftPin, OUTPUT);
pinMode (pwmRightPin, OUTPUT);

noInterrupts();

TCCR1A = 8;

TCCRIB = 8;

TCNTL = @;

OCR1A = 1599;

TCCRIB |= (1 €< WGM12);
TCCRIB |= (1 << C£511);
TIMSK1 |= (1 << OCIE1A);

TCCR2A =
TCCR2ZB =
TCHNTZ = 8;

8;
8;

TCCR2A |= (1 << WGM21) | (1 << WGM28);

TCCR2B |= (1 << CS21);

TCCR2A |= (1 << COM2A1) | (1 << COM2B1);

OCR2A = 8;
OCR2B = 8;

interrupts();

readDecoder() ;
previous_decoder_wal = current_decoder_val;

18
Timerl ISR

ISR(TIMER]

getAbsolutePosition();

pidControl();

setMotorSpeed() ;

Timer2 ISR

Appendix C - Calculation C Code
PID Controller with Weight Sum Filter

d pidControl() {
current_time =

current_time - previous_time))/1.8e6;

error = desired_angle -

error_derivative = (error - error

FDD_WSF_PID();

error_integral = error_integral + error *

if(error_integral > integral_mi
error_integral = integral_ma

integral < integral_min){
or_integral = integral_min;

pid out = k * * gr r tive + ki * error_integral);

19
Weighted Sum Filter

FOD_WSF_PID() {
sum = @.8;

AMPLE COUNT - 1;
1] = raw_der

error_derivati

_SAMPLE_COUNT; i++)
mples[i] * WSF_CONST_LOOKUP_TABLE

e * 2 + bitd state;

rotations--;

previous_decoder 1 = current_deco

absolute_angle = rotations * (MAX_DECODER_VALUE + 1) + current_decod

1
h

Appendix D - Motor Control Code

id setMotorSpeed() {

fabs (pid_out);

pid out > 8) {

motor_deg_sign

OCR2A motor_speed;

OCR2B = @;

motor_speed;

motorDirectionCont

PORTD &= -
PORTB |=
PORTB &= -
PORTD |=

20

	2 DOF Laser Pointer Systems Group Report

