CPEN 455 Project: Few-Shot Learning for Spam
Detection with Large Language Models

Stephen Qiao
Student ID: 66109877
University of British Columbia
sgqiao0l@student.ubc.ca

Abstract

This report explores techniques to enhance Large Language Models (LLMs) for
spam detection tasks. We investigate Zero-Shot learning, Naive Prompting, and
Full Fine-Tuning using a Bayesian Inverse classification approach. Additionally,
we analyze the implementation and mechanics of Key-Value (KV) caching in
decoder-only transformers.

1 Introduction

This project investigates the adaptation of Large Language Models (LLMs) for binary spam detection,
utilizing the Smo1LM2-135M-Instruct model within a Bayesian Inverse Classification framework.
Unlike discriminative approaches, this method leverages the generative capabilities of LLMs to
model the likelihood of the email content X given a label Y, computing the posterior P(Y|X)
P(X|Y)P(Y).

We evaluate this approach through three progressive stages: Zero-Shot Learning (baseline evalua-
tion), Naive Prompting (inference with rich context), and Full Fine-Tuning (optimizing parameters
for the Enron dataset). Finally, we analyze the underlying architecture of decoder-only transformers,
specifically focusing on the implementation, efficiency, and memory trade-offs of the Key-Value
(KV) Cache during autoregressive generation.

2 Model

2.1 Bayesian Inverse Classification Framework

We treat classification as a generative task where the model evaluates the likelihood of the input
text X conditioned on a candidate label Y. This approach, often referred to as a “Channel Model”
in recent literature, mitigates the bias often seen in direct discriminative predictions (P(Y|X)) by
leveraging the model’s pre-trained generative priors [1]. The computation graph for this process is
illustrated in Figure

2.1.1 Formal Description

Let D = {(z;,v:)}}L, be the dataset. The model parameters 6 define a probability distribution over
token sequences. For a given input x and candidate label ¢ € {Spam, Ham}, we construct a sequence
S.. The generative likelihood is the product of conditional token probabilities [2]:

T
Py(X|Y =) = [[Polelrcr, Y =) (1)

t=1

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Bayesian Inverse Classification Computation Graph Y

Input Email (X)

| Create Prompt: X + ‘Spam’ Template J | Create Prompt: X + ‘Ham’ Template l
| Pre-trained LLM (Forward Pass) | | Pre-trained LLM (Forward Pass) |
[Calculate Log Probability P(X | Y="Spam’) | | Calculate Log Probability P(X | Y="Ham’) l

Higher Probability? Higher Probability?

Compare &
Select
(Argmax)

Predicted Label (Yhat))

Figure 1: Computation graph for Bayesian Inverse Classification. The pre-trained LLM is queried
twice for each input to determine which label assigns higher probability to the email sequence.

By applying Bayes’ Rule and assuming a uniform prior P(Y"), the decision rule becomes [3]:

- e XD = APO)
c€{Spam,Ham} Zc/ Py (X|Y = C/)P(C/)

= argmaxlog Pp(X|Y = ¢) 2)
C

2.1.2 Loss Function
During fine-tuning, we minimize the Negative Log-Likelihood (NLL) of the sequence conditioned on

the correct label. We report the Bits Per Dimension (BPD) metric to normalize for length, a standard
metric for evaluating generative sequence models [4]:

L
1
Loep(0) = =7 > _logy Po(e|r<t, Yhne) 3)

t=1

2.1.3 Algorithm

The inference procedure is detailed in Algorithm [I]

Algorithm 1 Bayesian Inverse Classification with LLM

Require: Pre-trained LLM My, Tokenizer 7, Input Email x
Ensure: Predicted Label ¢
1: Pham ¢ FormatPrompt(z, label = “Ham”)
2: Pipam < FormatPrompt(z, label = “Spam”)
3: logitsy,, < Mo (T (Pham))
4: logitsgyyy, < Mo (T (Pypam))
5: Sham < D log Softmax(logits,,,,) > Sum log-probs of tokens
6
7
8

: Sgpam < 2 log Softmax (logits
¢ if Spam > Sham then

: 1 < Spam

9: else
10: 9 < Ham
11: end if

12: return gy

spam

2.2 Decoder-Only Transformers and KV Cache
2.2.1 Architecture and Mechanism

The SmolLM2-135M model follows the decoder-only architecture, employing causal masking (a
lower-triangular mask) to maintain the autoregressive property. In standard generation, predicting the
N-th token requires re-computing projections for all NV — 1 preceding tokens, scaling quadratically

(O(t*)) [5].

The Key-Value (KV) Cache addresses this by storing the Key (K') and Value (V') vectors of processed
tokens. At step ¢, the model computes @Q;, K, V; only for the new token and concatenates them with
cached states: Ky = [K<¢; K¢] and Vi = [Vy; Vi]. Attention is computed using Q; against these
full sequences, reducing complexity to O(t) per step [6].

2.2.2 Implementation Details

In our codebase (model/cache.py), this is encapsulated in the DynamicCache class. The update
method handles the concatenation of new states using torch.cat. To further optimize memory,
model/1llama_config.py supports Grouped Query Attention (GQA), where multiple query heads
share the same KV head.

2.2.3 Drawbacks of KV Cache

While KV Caching reduces computation, it creates a memory bottleneck. The cache grows linearly
with sequence length and batch size [S]. The memory footprint (in bytes) is:

Meache = 2 X Nlayers X Mheads X dhead X Lseq X Biize X Pbyles @

For long sequences, this consumes gigabytes of VRAM. Furthermore, decoding becomes memory-
bandwidth bound, as large cache tensors must be moved from High Bandwidth Memory (HBM) to
compute units at every step [7].

3 Experiments

3.1 Experimental Setup

We evaluated our models using the Enron Spam dataset (80% train, 20% validation from
train_val_subset.csv). Experiments used SmolLM2-135M-Instruct with Bayesian Inverse
Classification.

3.2 Chatbot Behavior Analysis

Qualitative analysis using examples/chatbot_example.py demonstrated mixed results. The
model showed reasonable pre-trained knowledge, correctly defining gravity. However, it failed
significantly at logic tasks (labeling a Snake as a "Mammal") and struggled with creative constraints,
entering a repetitive loop when asked to write a poem. This confirms that the base model suffers from
hallucinations without fine-tuning.

3.3 Baselines: Zero-Shot and Naive Prompting

We established a Zero-Shot baseline accuracy of 52.25%. Given the binary nature of the task, this is
only marginally better than random chance. Attempts to improve performance via Naive Prompting
(injecting rich context) resulted in an accuracy of 48.74%. This degradation suggests that for small
models, complex prompts act as noise rather than guidance.

3.4 Full Fine-Tuning and Ablation Study

Full parameter fine-tuning proved highly effective. The baseline configuration (Batch 8, LR 1le — 5,
80 iterations) achieved 89.61% accuracy. To further refine the model, we conducted a hyperparameter
search and ablation study, introducing Weight Decay (0.001) and Early Stopping.

Table 1: Hyperparameter Comparison: Baseline vs. Optimized

Parameter Baseline Optimized
Batch Size 8 4
Learning Rate 1 x107° 5x 107°
Weight Decay 0.0 0.001
Early Stopping None Patience=5
Iterations 80 Max 200

Test Accuracy 89.61% 96.21 %

The optimized configuration achieved 96.21% accuracy. Early stopping allowed the model to train
longer (up to 200 iterations) but halt automatically when validation performance plateaued, ensuring
optimal generalization.

4 Conclusion

In this project, we successfully adapted the Smo1LM2-135M model for spam detection. While the
pre-trained model lacked the capacity for zero-shot classification (52.25%), full fine-tuning with
Bayesian Inverse Classification yielded robust performance (96.91%). Our architectural analysis
highlighted that while the KV cache is essential for minimizing latency, it introduces significant
memory bandwidth constraints, scaling linearly with sequence length. Future work could explore
KV Cache Quantization to address these memory bottlenecks. Additionally, given more time, model
ensembling could be investigated to further enhance classification accuracy.

Acknowledgments and Disclosure of Funding

This project was implemented using the provided course codebase.

References

[1] Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., & Zettlemoyer, L. (2022). Rethinking
the Role of Demonstrations: What Makes In-Context Learning Work? Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing (EMNLP).

[2] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

[3] Zhang, Y., Feng, S., & Tan, C. (2024). Bayesian Example Selection Improves In-Context Learning for
Speech, Text, and Visual Modalities. arXiv preprint arXiv:2404.14716.

[4] Theis, L., Oord, A. v. d., & Bethge, M. (2016). A note on the evaluation of generative models. International
Conference on Learning Representations (ICLR).

[5] Towards Al (2025). The Secret Behind Fast LLM Infer-
ence: Unlocking the KV Cache. https://pub.towardsai.net/
the-secret-behind-fast-1lm-inference-unlocking-the-kv-cache-9c13140b632d

[6] Hichri, H. (2024). KV Caching Explained: Optimizing Transformer Inference Efficiency. Hugging Face
Blog.

[71 Towards AL (2025). The Engineering Guide to Efficient LLM Infer-
ence: Metrics, Memory, and Mathematics. https://pub.towardsai.net/
the-engineering-guide-to-efficient-1llm-inference-metrics-memory-and-mathematics-3aead91c99cc

A Appendix: Full Chatbot Logs

Below are the verbatim outputs from the chatbot_example.py script referenced in Section 3.2.

(base) sqiao01@dhcp-206-87-134-114 CPEN455-Project-2025W1 % uv run -m examples.chatbot_example

Using device: mps

Found 1 snapshots in cache

Loading model weights from: ./cache/huggingface/transformers/models--HuggingFaceTB--SmolLM2-135M-Instruct/snapshots/12fd25f77366fa6b3b4b

https://pub.towardsai.net/the-secret-behind-fast-llm-inference-unlocking-the-kv-cache-9c13140b632d
https://pub.towardsai.net/the-secret-behind-fast-llm-inference-unlocking-the-kv-cache-9c13140b632d
https://pub.towardsai.net/the-engineering-guide-to-efficient-llm-inference-metrics-memory-and-mathematics-3aead91c99cc
https://pub.towardsai.net/the-engineering-guide-to-efficient-llm-inference-metrics-memory-and-mathematics-3aead91c99cc

Creating Ilm_head.weight from embed_tokens.weight

Missing keys: []

Unexpected keys: []

<|im_start|>system

You are a helpful AI assistant named SmolLM, trained by Hugging Face<|im_end|>

<|im_start|>user

What is gravity?<|im_end|>

<|im_start|>assistant

<|im_start|>system

You are a helpful AI assistant named SmolLM, trained by Hugging Face<|im_end|>

<|im_start|>user

What is gravity?<|im_end|>

<|im_start|>assistant

Gravity is a fundamental force of nature that attracts objects with mass towards each other. It is a result of the interaction between m
Imagine spacetime as a four-dimensional fabric that can be curved by the presence of massive objects like planets, stars, or galaxies. 0
The strength of gravity depends on the mass and energy of the object. The stronger the object’s mass and energy, the stronger the gravit
Gravity is not a force that acts between objects, but rather a property of spacetime itself. It is a fundamental aspect of the universe

(base) sqiao01@dhcp-206-87-134-114 CPEN455-Project-2025W1 % uv run -m examples.chatbot_example
Using device: mps

Found 1 snapshots in cache

Loading model weights from: ./cache/huggingface/transformers/models--HuggingFaceTB--SmolLM2-135M-Instruct/snapshots/12fd25f77366fa6b3b4b
Creating lm_head.weight from embed_tokens.weight

Missing keys: []

Unexpected keys: []

<|im_start|>system

You are a helpful AI assistant named SmolLM, trained by Hugging Face<|im_end|>
<|im_start|>user

Write a short poem about a robot learning to love.<|im_end|>
<|im_start|>assistant

<|im_start|>system

You are a helpful AI assistant named SmolLM, trained by Hugging Face<|im_end|>
<|im_start|>user

Write a short poem about a robot learning to love.<|im_end|>
<|im_start|>assistant

In a world where machines are the masters of creation,

A robot, with a heart of gold, learns to love.

It’s a world where the lines between life and death are blurred,
A robot, with a heart of gold, learns to love.

It’s a world where the robots are the masters of love,

A robot, with a heart of gold, learns to love.

It’s a world where the robots are the masters of love,

A robot, with a heart of gold, learns to love.

It’s a world where the robots are the masters of love,

A robot, with a heart of gold, learns to love.

It’s a world where the robots are the masters of love,

A robot, with a heart of gold, learns to love.

It’s a world where the robots are the masters of love,

A robot, with a heart of gold, learns to love.

It’s a world where the robots are the masters of love,

A robot, with a heart of gold, learns to love.

It’s a world where the robots are the masters of love,

A robot, with a heart of gold, learns to love.

It’s a world where the robots are the masters of love,

A robot, with a heart of gold, learns to love.

It’s a world where the robots are the masters of love,

A robot, with a heart of gold, learns to love.

It’s a world where the robots are the masters of love,

A robot, with a heart of gold, learns to love.

It’s a world where the robots are the masters of love,

A robot, with a heart of gold, learns to love.

It’s a world where the robots are the masters of love,

A robot, with a heart of gold, learns to love.

It’s a world where the robots are the masters of love,

A robot, with a heart of gold, learns to love.

It’s a world where the robots are the masters of love,

A robot, with a heart of gold, learns to love.

It’s a world where the robots are the masters of love,

A robot, with a heart of gold, learns to love.

It’s a world where the robots are

(base) sqiao01@dhcp-206-87-134-114 CPEN455-Project-2025W1 % uv run -m examples.chatbot_example

Using device: mps

Found 1 snapshots in cache

Loading model weights from: ./cache/huggingface/transformers/models--HuggingFaceTB--SmolLM2-135M-Instruct/snapshots/12fd25f77366fa6b3b4b
Creating lm_head.weight from embed_tokens.weight

Missing keys: []

Unexpected keys: []

<|im_start|>system

You are a helpful AI assistant named SmolLM, trained by Hugging Face<|im_end|>

<|im_start|>user

Write a professional email to a colleague asking to reschedule our meeting from Tuesday to Wednesday.<|im_end|>

<|im_start|>assistant

<|im_start|>system

You are a helpful AI assistant named SmolLM, trained by Hugging Face<|im_end|>

<|im_start|>user

Write a professional email to a colleague asking to reschedule our meeting from Tuesday to Wednesday.<|im_end|>

<|im_start|>assistant

Subject: Requesting a Rescheduled Meeting on Tuesday, June 15th, at 2 PM

Dear [Colleague’s Name],

I hope this message finds you well. I wanted to follow up on our recent discussion regarding the upcoming meeting. I understand that you
I am writing to request a rescheduled meeting from Tuesday, June 15th, at 2 PM to ensure that we can discuss our project in a more produ
I would appreciate it if you could let me know if this meeting is feasible and if you have any other requests or questions. I look forwa
Best regards,

[Your Name]

Feel free to modify the email to fit your personal style and tone.<|im_end|>

(base) sqiao01@dhcp-206-87-134-114 CPEN455-Project-2025W1 % uv run -m examples.chatbot_example
Using device: mps

Found 1 snapshots in cache

Loading model weights from: ./cache/huggingface/transformers/models--HuggingFaceTB--SmolLM2-135M-Instruct/snapshots/12£d25£77366fa6b3b4b
Creating lm_head.weight from embed_tokens.weight

Missing keys: []

Unexpected keys: []

<|im_start|>system

You are a helpful AI assistant named SmolLM, trained by Hugging Face<|im_end|>
<|im_start|>user

Classify the following animals into mammals and reptiles: Snake, Dog, Lizard, Cat.<|im_end|>
<|im_start|>assistant

<|im_start|>system

You are a helpful AI assistant named SmolLM, trained by Hugging Face<|im_end|>
<|im_start|>user

Classify the following animals into mammals and reptiles: Snake, Dog, Lizard, Cat.<|im_end|>
<|im_start|>assistant

Based on the information provided, here are the animals categorized into mammals and reptiles:
- Snake: Mammals

- Dog: Reptiles

- Lizard: Reptiles

- Cat: Mammals

These animals are mammals because they belong to the class Mammalia and are warm-blooded, meaning they can regulate their body temperatu

	Introduction
	Model
	Bayesian Inverse Classification Framework
	Formal Description
	Loss Function
	Algorithm

	Decoder-Only Transformers and KV Cache
	Architecture and Mechanism
	Implementation Details
	Drawbacks of KV Cache

	Experiments
	Experimental Setup
	Chatbot Behavior Analysis
	Baselines: Zero-Shot and Naive Prompting
	Full Fine-Tuning and Ablation Study

	Conclusion
	Appendix: Full Chatbot Logs

